HashMap基本是面试必问的点,因为这个数据结构用的太频繁了,jdk1.8中的优化也是比较巧妙。有必要去深入探讨一下。但是涉及的内容比较多,这里只先探讨jdk8中HashMap的实现,至于jdk7中HashMap的死循环问题、红黑树的原理等都不会在本篇文章扩展到。其他的文章将会再去探讨整理。

本篇文章较长,高能预警。

一、前言

之前的List,讲了ArrayListLinkedList,最后讲到了CopyOnWriteArrayList,就前两者而言,反映的是两种思想:

(1)ArrayList以数组形式实现,顺序插入、查找快,插入、删除较慢

(2)LinkedList以链表形式实现,顺序插入、查找较慢,插入、删除方便

那么是否有一种数据结构能够结合上面两种的优点呢?有,答案就是HashMap

HashMap是一种非常常见、方便和有用的集合,是一种键值对(K-V)形式的存储结构,在有了HashCode的基础后,下面将还是用图示的方式解读HashMap的实现原理。

Java为数据结构中的映射定义了一个接口java.util.Map,此接口主要有四个常用的实现类,分别是HashMapHashtableLinkedHashMapTreeMap,类继承关系如下图所示:

image

(1) HashMap:它根据键的hashCode值存储数据,大多数情况下可以直接定位到它的值,因而具有很快的访问速度,但遍历顺序却是不确定的。 HashMap最多只允许一条记录的键为null,允许多条记录的值为nullHashMap非线程安全,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。如果需要满足线程安全,可以用 CollectionssynchronizedMap方法使HashMap具有线程安全的能力,或者使用ConcurrentHashMap

(2) HashtableHashtable是遗留类,很多映射的常用功能与HashMap类似,不同的是它承自Dictionary类,并且是线程安全的,任一时间只有一个线程能写Hashtable,并发性不如ConcurrentHashMap,因为ConcurrentHashMap引入了分段锁。Hashtable不建议在新代码中使用,不需要线程安全的场合可以用HashMap替换,需要线程安全的场合可以用ConcurrentHashMap替换。

(3) LinkedHashMapLinkedHashMapHashMap的一个子类,保存了记录的插入顺序,在用Iterator遍历LinkedHashMap时,先得到的记录肯定是先插入的,也可以在构造时带参数,按照访问次序排序。

(4) TreeMapTreeMap实现SortedMap接口,能够把它保存的记录根据键排序,默认是按键值的升序排序,也可以指定排序的比较器,当用Iterator遍历TreeMap时,得到的记录是排过序的。如果使用排序的映射,建议使用TreeMap。在使用TreeMap时,key必须实现Comparable接口或者在构造TreeMap传入自定义的Comparator,否则会在运行时抛出java.lang.ClassCastException类型的异常。

对于上述四种Map类型的类,要求映射中的key是不可变对象。不可变对象是该对象在创建后它的哈希值不会被改变。如果对象的哈希值发生变化,Map对象很可能就定位不到映射的位置了。

二、HashMap的结构

其中哈希表是一个数组,我们经常把数组中的每一个节点称为一个桶,哈希表中的每个节点都用来存储一个键值对。

在插入元素时,如果发生冲突(即多个键值对映射到同一个桶上)的话,就会通过链表的形式来解决冲突。

因为一个桶上可能存在多个键值对,所以在查找的时候,会先通过key的哈希值先定位到桶,再遍历桶上的所有键值对,找出key相等的键值对,从而来获取value

image

如图所示,HashMap 底层是基于数组和链表实现的。其中有两个重要的参数:

  • 容量
  • 负载因子

容量的默认大小是 16,负载因子是 0.75,当 HashMap 的 size > 16*0.75 时就会发生扩容(容量和负载因子都可以自由调整)。

三、继承关系

1
2
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable

说明:

HashMap继承自AbstractMapAbstractMapMap接口的骨干实现,AbstractMap中实现了Map中最重要最常用和方法,这样HashMap继承AbstractMap就不需要实现Map的所有方法,让HashMap减少了大量的工作。

四、属性

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
//默认的初始容量为16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
//最大的容量上限为2^30
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认的负载因子为0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//变成树型结构的临界值为8
static final int TREEIFY_THRESHOLD = 8;
//恢复链式结构的临界值为6
static final int UNTREEIFY_THRESHOLD = 6;
/**
* 哈希表的最小树形化容量
* 当哈希表中的容量大于这个值时,表中的桶才能进行树形化
* 否则桶内元素太多时会扩容,而不是树形化
* 为了避免进行扩容、树形化选择的冲突,这个值不能小于 4 * TREEIFY_THRESHOLD
*/
static final int MIN_TREEIFY_CAPACITY = 64;
//哈希表
transient Node<K,V>[] table;
//哈希表中键值对的个数
transient int size;
//哈希表被修改的次数
transient int modCount;
//它是通过capacity*load factor计算出来的,当size到达这个值时,就会进行扩容操作
int threshold;
//负载因子
final float loadFactor;
4.1 几个属性的详细说明
1
2
3
4
int threshold;             // 所能容纳的key-value对极限 
final float loadFactor; // 负载因子
int modCount;
int size;

首先,Node[] table的初始化长度length(默认值是16),Load factor为负载因子(默认值是0.75),thresholdHashMap所能容纳的最大数据量的Node(键值对)个数。threshold = length * Load factor。也就是说,在数组定义好长度之后,负载因子越大,所能容纳的键值对个数越多。

结合负载因子的定义公式可知,threshold就是在此Load factorlength(数组长度)对应下允许的最大元素数目,超过这个数目就重新resize(扩容),扩容后的HashMap容量是之前容量的两倍(为什么是两倍下文会说明)

默认的负载因子0.75是对空间和时间效率的一个平衡选择,建议大家不要修改,除非在时间和空间比较特殊的情况下,如果内存空间很多而又对时间效率要求很高,可以降低负载因子`Load factor`的值;相反,如果内存空间紧张而对时间效率要求不高,可以增加负载因子`loadFactor`的值,这个值可以大于1。

size这个字段其实很好理解,就是HashMap实际存在的键值对数量注意sizetable的长度length、容纳最大键值对数量threshold的区别

modCount字段主要用来记录HashMap内部结构发生变化的次数,主要用于迭代的快速失败。强调一点,内部结构发生变化指的是结构发生变化,例如put新键值对,但是某个key对应的value值被覆盖不属于结构变化。

HashMap中,哈希桶数组table的长度length大小必须为2的n次方(一定是合数),这是一种非常规的设计,因为常规的设计是把桶的大小设计为素数。相对来说素数导致冲突的概率要小于合数,具体证明可以参考 http://blog.csdn.net/liuqiyao_01/article/details/14475159Hashtable初始化桶大小为11,就是桶大小设计为素数的应用(Hashtable扩容后不能保证还是素数)。HashMap采用这种非常规设计,主要是为了在取模和扩容时做优化,同时为了减少冲突,HashMap定位哈希桶索引位置时,也加入了高位参与运算的过程。下文会说明。

这里存在一个问题,即使负载因子和Hash算法设计的再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响HashMap的性能。于是,在JDK1.8版本中,对数据结构做了进一步的优化,引入了红黑树。而当链表长度太长(默认超过8)时,并且链表的长度超过64时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能,其中会用到红黑树的插入、删除、查找等算法。

image

这里着重提一下MIN_TREEIFY_CAPACITY字段,容易与TREEIFY_THRESHOLD打架,TREEIFY_THRESHOLD是指桶中元素达到8个,就将其本来的链表结构改为红黑树,提高查询的效率。MIN_TREEIFY_CAPACITY是指最小树化的哈希表元素个数,也就是说,小于这个值,就算你(数组)桶里的元素数量大于8了,还是要用链表存储,只有同时满足:表中数据容量已经扩容到MIN_TREEIFY_CAPACITY这个长度,并且桶里的数据个数达到8个的时候,才会将该桶里的结构进行树化。注意扩容是数组的复制。

image

4.2 Node结构
1
2
3
4
5
6
7
8
9
10
11
12
13
14
static class Node<K,V> implements Map.Entry<K,V> {
final int hash; //用来定位数组索引位置
final K key;
V value;
Node<K,V> next; //链表的下一个node

Node(int hash, K key, V value, Node<K,V> next) { ... }
public final K getKey(){ ... }
public final V getValue() { ... }
public final String toString() { ... }
public final int hashCode() { ... }
public final V setValue(V newValue) { ... }
public final boolean equals(Object o) { ... }
}

NodeHashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。上图中的每个黑色圆点就是一个Node对象。

例如程序执行下面代码:

1
map.put("美团","小美");

系统将调用"美团"这个keyhashCode()方法得到其hashCode值(该方法适用于每个Java对象)。

然后再通过Hash算法来定位该键值对的存储位置,有时两个key会定位到相同的位置,表示发生了Hash碰撞。

当然Hash算法计算结果越分散均匀,Hash碰撞的概率就越小,map的存取效率就会越高。

如果哈希桶数组很大,即使较差的Hash算法也会比较分散,如果哈希桶数组数组很小,即使好的Hash算法也会出现较多碰撞,所以就需要在空间成本和时间成本之间权衡,其实就是在根据实际情况确定哈希桶数组的大小,并在此基础上设计好的hash算法减少Hash碰撞。

那么通过什么方式来控制map使得Hash碰撞的概率又小,哈希桶数组(Node[] table)占用空间又少呢?答案就是好的Hash算法(5.4节)和扩容机制(5.5节)。下文会讲到。

五、方法

5.1 get方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
//get方法主要调用的是getNode方法,所以重点要看getNode方法的实现
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
//如果哈希表不为空 && key对应的桶上不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//是否直接命中
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
//判断是否有后续节点
if ((e = first.next) != null) {
//如果当前的桶是采用红黑树处理冲突,则调用红黑树的get方法去获取节点
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
//不是红黑树的话,那就是传统的链式结构了,通过循环的方法判断链中是否存在该key
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}

实现步骤大致如下:

  • 通过hash值获取该key映射到的桶。
  • 桶上的key就是要查找的key,则直接命中。
  • 桶上的key不是要查找的key,则查看后续节点:
  • 如果后续节点是树节点,通过调用树的方法查找该key
  • 如果后续节点是链式节点,则通过循环遍历链查找该key
5.2 put方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
//put方法的具体实现也是在putVal方法中,所以我们重点看下面的putVal方法
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//如果哈希表为空,则先创建一个哈希表
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//如果当前桶没有碰撞冲突,则直接把键值对插入,完事
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
//如果桶上节点的key与当前key重复,那你就是我要找的节点了
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//如果是采用红黑树的方式处理冲突,则通过红黑树的putTreeVal方法去插入这个键值对
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//否则就是传统的链式结构
else {
//采用循环遍历的方式,判断链中是否有重复的key
for (int binCount = 0; ; ++binCount) {
//到了链尾还没找到重复的key,则说明HashMap没有包含该键
if ((e = p.next) == null) {
//创建一个新节点插入到尾部
p.next = newNode(hash, key, value, null);

//如果链的长度大于TREEIFY_THRESHOLD这个临界值,则把链变为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//找到了重复的key
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//这里表示在上面的操作中找到了重复的键,所以这里把该键的值替换为新值
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
//判断是否需要进行扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}

put方法比较复杂,实现步骤大致如下:

  • 先通过hash值计算出key映射到哪个桶。
  • 如果桶上没有碰撞冲突,则直接插入。
  • 如果出现碰撞冲突了,则需要处理冲突:
    • 如果该桶使用红黑树处理冲突,则调用红黑树的方法插入。
    • 否则采用传统的链式方法插入。如果链的长度到达临界值,则把链转变为红黑树。
  • 如果桶中存在重复的键,则为该键替换新值。
  • 如果size大于阈值,则进行扩容。

image

5.3 remove方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
//remove方法的具体实现在removeNode方法中,所以我们重点看下面的removeNode方法
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}

final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
//如果当前key映射到的桶不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
//如果桶上的节点就是要找的key,则直接命中
if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
//如果是以红黑树处理冲突,则构建一个树节点
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
//如果是以链式的方式处理冲突,则通过遍历链表来寻找节点
else {
do {
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
//比对找到的key的value跟要删除的是否匹配
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
//通过调用红黑树的方法来删除节点
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
//使用链表的操作来删除节点
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
5.4 hash方法(确定哈希桶数组索引位置)

不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的元素位置尽量分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,不用遍历链表,大大优化了查询的效率。HashMap定位数组索引位置,直接决定了hash方法的离散性能。

注意get方法和put方法源码中都需要先计算key映射到哪个桶上,然后才进行之后的操作,计算的主要代码如下:

1
(n - 1) & hash

上面代码中的n指的是哈希表的大小,hash指的是key的哈希值,hash是通过下面这个方法计算出来的,采用了二次哈希的方式,其中key的hashCode方法是一个native方法:

1
2
3
4
5
6
static final int hash(Object key) {   //jdk1.8 & jdk1.7
int h;
// h = key.hashCode() 为第一步 取hashCode值
// h ^ (h >>> 16) 为第二步 高位参与运算
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

对于任意给定的对象,只要它的hashCode()返回值相同,那么程序调用方法一所计算得到的Hash码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,模运算的消耗还是比较大的,在HashMap中是这样做的:调用方法二来计算该对象应该保存在table数组的哪个索引处。

这个方法非常巧妙,它通过h & (table.length -1)来得到该对象的保存位,而HashMap底层数组的长度总是2的n次方,这是HashMap在速度上的优化。当length总是2的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。

在JDK1.8的实现中,优化了高位运算的算法,通过hashCode()的高16位异或低16位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么做可以在数组tablelength比较小的时候,也能保证考虑到高低Bit都参与到Hash的计算中,同时不会有太大的开销。

image

总结就是:由于在计算中位运算比取模运算效率高的多,所以 HashMap 规定数组的长度为 2^n 。这样用 2^n - 1 做位运算与取模效果一致,并且效率还要高出许多。这样回答了上文中:好的Hash算法到底是什么。

5.5 resize方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
//计算扩容后的大小
if (oldCap > 0) {
//如果当前容量超过最大容量,则无法进行扩容
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//没超过最大值则扩为原来的两倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//新的resize阈值
threshold = newThr;
//创建新的哈希表
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
//遍历旧哈希表的每个桶,重新计算桶里元素的新位置
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
//如果桶上只有一个键值对,则直接插入
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
//如果是通过红黑树来处理冲突的,则调用相关方法把树分离开
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//如果采用链式处理冲突
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
//通过上面讲的方法来计算节点的新位置
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}

HashMap在进行扩容时,使用的rehash方式非常巧妙,因为每次扩容都是翻倍,与原来计算(n-1)&hash的结果相比,只是多了一个bit位,所以节点要么就在原来的位置,要么就被分配到“原位置+旧容量”这个位置。

例如,原来的容量为32,那么应该拿hash跟31(0x11111)做与操作;在扩容扩到了64的容量之后,应该拿hash跟63(0x111111)做与操作。新容量跟原来相比只是多了一个bit位,假设原来的位置在23,那么当新增的那个bit位的计算结果为0时,那么该节点还是在23;相反,计算结果为1时,则该节点会被分配到23+31的桶上。

这样做的好处:正是因为这样巧妙的rehash方式,保证了rehash之后每个桶上的节点数必定小于等于原来桶上的节点数,即保证了rehash之后不会出现更严重的冲突。回答了上文中好的扩容机制。

六、总结

  • HashMap的结构底层是一个数组,每个数组元素是一个桶,后面可能会连着一串因为碰撞而聚在一起的(key,value)节点,以链表的形式或者树的形式挂着
  • 按照原来的拉链法来解决冲突,如果一个桶上的冲突很严重的话,是会导致哈希表的效率降低至O(n),而通过红黑树的方式,可以把效率改进至O(logn)。相比链式结构的节点,树型结构的节点会占用比较多的空间,所以这是一种以空间换时间的改进方式。
  • threshold是数组长度扩容的临界值
  • modCount字段主要用来记录HashMap内部结构发生变化的次数,这里结构变化必须是新的值塞进来或者某个值删除这种类型,而不是仅仅是覆盖
  • 只有同时满足:表中数据容量已经扩容到MIN_TREEIFY_CAPACITY这个长度,并且桶里的数据个数达到8个的时候,才会将该桶里的结构进行树化。
  • 好的hash算法:由于在计算中位运算比取模运算效率高的多,所以HashMap规定数组的长度为 2^n 。这样用 2^n - 1hash 做位运算与取模效果一致,并且效率还要高出许多。
  • 好的扩容机制:因为每次扩容都是翻倍,与原来计算(n-1)&hash的结果相比,只是多了一个bit位,所以节点要么就在原来的位置,要么就被分配到“原位置+旧容量”这个位置。这样做的好处:正是因为这样巧妙的rehash方式,保证了rehash之后每个桶上的节点数必定小于等于原来桶上的节点数,即保证了rehash之后不会出现更严重的冲突。
  • 还有就是要记住put的过程。

整理自: