剑指offer第四题。

题目描述

输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。

解题思路

因为是树的结构,一般都是用递归来实现。

用数学归纳法的思想就是,假设最后一步,就是root的左右子树都已经重建好了,那么我只要考虑将root的左右子树安上去即可。

根据前序遍历的性质,第一个元素必然就是root,那么下面的工作就是如何确定root的左右子树的范围。

根据中序遍历的性质,root元素前面都是root的左子树,后面都是root的右子树。那么我们只要找到中序遍历中root的位置,就可以确定好左右子树的范围。

正如上面所说,只需要将确定的左右子树安到root上即可。递归要注意出口,假设最后只有一个元素了,那么就要返回。

我的答案

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import java.util.Arrays;
public class Solution {
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
//数组长度为0的时候要处理
if(pre.length == 0){
return null;
}

int rootVal = pre[0];

//数组长度仅为1的时候就要处理
if(pre.length == 1){
return new TreeNode(rootVal);
}

//我们先找到root所在的位置,确定好前序和中序中左子树和右子树序列的范围
TreeNode root = new TreeNode(rootVal);
int rootIndex = 0;
for(int i=0;i<in.length;i++){
if(rootVal == in[i]){
rootIndex = i;
break;
}
}

//递归,假设root的左右子树都已经构建完毕,那么只要将左右子树安到root左右即可
//这里注意Arrays.copyOfRange(int[],start,end)是[)的区间
root.left = reConstructBinaryTree(Arrays.copyOfRange(pre,1,rootIndex+1),Arrays.copyOfRange(in,0,rootIndex));
root.right = reConstructBinaryTree(Arrays.copyOfRange(pre,rootIndex+1,pre.length),Arrays.copyOfRange(in,rootIndex+1,in.length));


return root;
}
}